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Abstract—We introduce the geometric process for the analysis of accelerated life testing with Marshall-Olkin Lomax distribution for 
constant stress. By using geometric process one deals with the original parameters of the life distribution in accelerated life testing while in 
other cases the log linear function between life and stress is used which is a re-parameterization of the original parameter. The maximum 
likelihood procedure is used for parameter estimation of the model. Simulation-study bootstrapped confidence interval is also evaluated 
using the R-software. Variation of parameters is also shown. 

Index Terms— Geometric Process, Marshall-Olkin Extended Lomax (MOEL) model, Maximum Likelihood Estimation, Fisher Information            
Matrix, Bootstrapped Confidence Interval, Simulation Study. 
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1     INTRODUCTION                                                                   
RODUCTS with high reliability often require long time 
period for product life test. In such cases, an Accelerated 
life test (ALT) is used which is a quick way to obtain 

information about the life distribution of a material, 
component or product which reduces the experimental time 
and the cost incurred in the experiment. It uses aggravated 
conditions of heat, oxygen, sunlight, vibration, etc. to speed up 
the normal processes of items. ALT can be used to determine 
long term effects of expected levels of stress within a shorter 
time, usually in a laboratory, by controlled standard test 
methods and estimate the life of a product.  

ALT can be carried out using constant-stress, step-stress, or 
progressive-stress (linearly increasing stress) conditions. In 
constant stress, each specimen is run at constant stress level 
while in step-stress loading, a specimen is subjected to 
successively higher levels of stress. As Compared to step-
stress accelerated; constant-stress accelerated life test has some 
merits such as, simple test methods, ripe theory, and precise 
test data.  In the current study, we have only discussed the 
application of constant stress in accelerated life testing. 
Constant stress ALT has been the subject of extensive research, 
Ahmad et al. [1], Islam and Ahmad [2], Ahmad and Islam [3], 
Ahmad et al. [4] and Ahmad [5] discuss the optimal constant 
stress accelerated life test designs under periodic inspection 
and Type-I censoring. Yang [6] proposed an optimal design of 
4-level constant stress ALT plans considering different 
censoring times. Pan et al. [7] proposed a bivariate constant 
stress accelerated degradation test model by assuming that the 
copula parameter is a function of the stress level that can be  
described by the logistic function. Walkins and John [8] 
considered the constant stress accelerated life test based on 
Weibull distribution with constant shape and a log linear link 

between scale the stress factor which is terminated by a Type-
II censoring regime at one of the stress level. 

In this paper, the concept of geometric process, first given 
by Lam [9], is introduced in the context of repair replacement 
problems. The geometric process simply defines a simple 
monotone process and has been applied to a variety of 
situations such as the maintenance problems in engineering. 
Lam [10] introduced least square and modified moment 
estimation of parameters for GP, and studied the asymptotic 
normal properties of these estimators. Lam and Chan [11] 
derived the maximum likelihood estimate of parameters of the 
GP with lognormal distribution. Zhou et al. [12] implemented 
the Geometric Process in the constant stress accelerated life 
test model based on the progressive Type-I hybrid censored 
Rayleigh failure data. Sana et al. [17] extended the GP model 
for the analysis of ALT with complete inverse Weibull failure 
data under constant stress. 

Most of the available literature on accelerated life testing 
deals with the exponential & weibull distribution. However, 
these distributions have a limited range of behavior and 
cannot represent all situations found in applications. Although 
the exponential distribution is often described as flexible, its 
hazard function is in fact restricted, being constant .So, a more 
generalized case is introduced by  Marshall and Olkin [13] by 
adding a new parameter to a family of distribution to 
overcome the upcoming restrictions. Gupta et al. [14] 
estimated the reliability from Marshall-Olkin Extended Lomax 
distribution. 

In this paper, the constant stress ALT with geometric 
process for Marshall-Olkin extended Lomax distribution is 
taken into consideration. The maximum likelihood estimates 
of the parameters and bootstrap confidence intervals are 
calculated through simulation studies. Various graphics are 
also shown for comparison of various maximum likelihood 
estimates. 

2     GEOMETRIC PROCESS AND MODEL ANALYSIS  
2.1 The Geometric Process 
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A geometric process describes a stochastic process {Xn, n = 1, 
2, 3 .........n}, where there exists real valued λ>0 such that {λn-1 
Xn, n = 1, 2, 3 ...n} forms a renewal process. The positive 
number λ>0 is called the ratio of GP. It is clear to see that a GP 
is stochastically increasing if 0<λ<1 and stochastically 
decreasing if λ>1. Therefore, the GP is the natural approach to 
analysed data from a series of event with trend. 
 
2.2 Model Analysis 
2.2.1 The Marshall-Olkin distribution  
Marshall and Olkin [13] introduced a new method of adding a 
parameter into a family of distributions. According to, them if
 tF denotes the survival or reliability function of continuous  

random variable X then adding a new parameter results in 
another Survival function Ḡ(t)  which is defined by 
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If g (t) and r (t) are the probability density function and hazard 
rate function corresponding to Ḡ then 
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where h (t) is the hazard rate corresponding to f(t). 
Marshall-Olkin extended distributions offer a wide range of 
behavior than the basic distributions from which they are 
derived. 
 
2.2.2. Marshall-Olkin extended Lomax distribution 
The probability density function (p.d.f.) and cumulative 
distribution function (c.d.f) of the Marshall–Olkin extended 
Lomax distribution respectively, are given by 
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α, θ and δ  are  shape, scale and tilt/index parameter 
respectively. 
 
2.2.3. Assumptions and test procedure 

1. Under any constant stress, the time to failure of a test 
unit follows a Marshall-Olkin extended   Lomax 
distribution with distribution function given by (5) 

2. The shape parameter α is constant. 

3. Suppose an accelerated life test with s increasing stress 
levels in which a random sample of n identical items is 
placed under each stress level and start to operate at 
the same time. Let tki, k = 1, 2 ...s, i = 1, 2, 3 ...n denote 
observed failure time of ith test item under kth stress 
level. 

4. The scale parameter θi at stress Si is given by 
ibSa

i e  ,where a and b unknown parameters 
depending on the nature of the product and method of 
test 

5. Let the sequence of random variables X0, X1, X2, X4 
.......................Xn denote the lifetimes under each stress 
level, where X0 denotes item’s lifetime under the 
design stress at which items will operate ordinarily. 
We assume {Xk, k = 1, 2, 3 .........s}, is a geometric 
process with ratio λ>0. 

The next proof discusses how the assumption of geometric 
process (assumption 5) is satisfied when there is a log linear 
relationship between a life characteristic and the stress level 
(assumption 4). 
From assumption (4), it can easily be shown that 
log (θk) = a + bSk and log(θk+1) = a + bSk+1           
It can be written as 
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The p.d.f. of product lifetime under kth stress level is 
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Thus from equation (7) we get
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Therefore, it is clear that lifetimes under a sequence of 
arithmetically increasing stress levels form a geometric 
process with ratio λ. 
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2.2.4 The random deviate generation 
The random deviate can be generated by 
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where u ϵ U (0, 1) distribution. 
 
2.2.5 The quantile function 
For a continuous distribution F (t) the p percentile ϛp, for a 
given p, 0 < p <1, is a number such that P (X≤ ϛp) = F (ϛp)=p. 
The quantile function of Marshall-Olkin Extended Lomax 
(MOEL) model can be obtained by solving: 
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3    MAXIMUM LIKELIHOOD ESTIMATION  
While various methods for parameter estimation exist, 
maximum likelihood estimation (MLE) is one of the most 
widely used methods. It can be applied to any probability 
distribution while other methods are somewhat restricted. 
MLE implementation in ALT is mathematically more complex 
and, generally, closed form estimates of parameters do not 
exist. Therefore, numerical techniques such as Newton’s 
method used to compute them. 

The likelihood function for constant stress ALT for 
complete case Marshall-Olkin extended Lomax distribution 
failure data using GP for s stress levels is given by: 
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The log-likelihood function corresponding (9) can be rewritten 
as: 
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MLEs of θ, λ and δ are obtained by solving the following 

normal equations 0l,0l
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Equations (11), (12) & (13) are used to find the estimate of θ, λ 
and δ. 

4    FISHER INFORMATION MATRIX & ASYMPTOTIC 
CONFIDENCE INTERVAL 

The asymptotic Fisher Information matrix is given by: 
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Now the variance and covariance matrix can be written as 
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The asymptotic confidence interval for α, θ and λ are given by 
following equations: 
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5   SIMULATION STUDY 
This implementation is done in R. First random samples 
uki(0,1),  k = 1, 2, 3, .......,s i = 1, 2, 3, .......n are generated from a 
uniform distribution and then with the help of equation (8), tki, 
k = 1, 2, 3, .......s, i = 1, 2, 3, .......n is generated for α = 0.9, θ = 0.2,  
λ = 0.9  and δ = 0.7

 
and the number of stress levels is chosen to 

be s = 2 and 4.  
After generating samples for different values of n = 20, 40, 

60, 80, 100, 200 & 400, we find the estimate of θ, λ & δ, keeping 
α (shape parameter) fixed. The function maxNR( ) given in R-
package is used for achieving this. It also calculates the 
functional value, gradient & Hessian. 

The performance of the estimates can be evaluated through 
some measures of accuracy which are mean absolute error 
(MAE) & square root of mean square error √MSE. Smaller the 
values of √MSE and MAE better will be the estimated results. 
Further the 90% bootstrap confidence intervals are also 
calculated. 
 
5.1 The algorithm of bootstrap confidence Interval 

1.   First calculate the original sample tki, k = 1, 2, 3, .......,s 
and i = 1, 2, 3 ...n of size n as defined earlier for s=2 & 
s=4.  

2.   For each sample obtain the subsample of size n/2 and 
obtain MLE 

3.  Repeat step (2) b=1000 times to get 1000 bootstrap 
estimates as ,ˆ,ˆ,ˆ (1)(1))1(  (2)(2))2( ˆ,ˆ,ˆ  .................................. 

      .ˆ,ˆ,ˆ (b)(b))b(   
4.    Calculate the average of the estimates
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5.    Now calculate the standard deviation of bootstrap
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            Similarly we find other estimates 
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  6.    Confidence interval is given by   

     SZ and S Z ; SZ  

            If 90% confidence interval is required is desired then     
            Zω=Z0.05= 1.645

 
 

TABLE 1 
SIMULATIONS RESULTS BASED ON COMPLETE DATA FROM GP MOEL WITH θ=0.2, λ=0.9 and δ=0.7 FOR s=2 

 
 

TABLE 2 
SIMULATIONS RESULTS BASED ON COMPLETE DATA FROM GP MOEL WITH θ=0.2, λ=0.9 and δ=0.7 FOR s=4 

 

n PARAMETER MLE  SE MAE √ MSE BOOTSTRAP CI 
LCL                UCL 

 θ 4.40133802 1.321414 2.626792 2.986435 1.28739 4.891070 
20 λ 1.10482761 0.255569 0.055579 0.086325 0.56470 1.329229 

 δ 0.02908435 0.001769 0.140987 0.232817 0.026174 0.031994 
        
 θ 4.08691121 1.439212 2.331112 2.652217 2.790542 5.484916 

40 λ 1.01150263 0.106430 0.036467 0.052258 0.836425 1.186589 
 δ 0.02655307 0.000114 0.108955 0.197193 0.026219 0.026952 

n PARAMETER MLE  SE MAE √ MSE BOOTSTRAP CI 
LCL                UCL 

 θ 3.05730798 1.542300 2.023283 2.248839 0.850262 3.549331 
20 λ 1.07504307 0.517166 0.099839 0.126866 0.325226 1.093571 

 δ 0.02796739 0.022861 0.210836 0.333843 0.019530 0.046745 
        
 θ 3.84872632 0.970582 2.435263 2.718169 3.592109 4.043534 

40 λ 0.78124448 0.266824 0.049884 0.074660 0.468100 0.820670 
 δ 0.01428087 0.008603 0.110729 0.042674 0.000129 0.028433 
        
 θ 2.96213065 1.419467 1.909590 2.135449 0.790767 4.956632 

60 λ 1.17310157 0.316737 0.111146 0.154519 1.0695420 1.606714 
 δ 0.03284991 0.018085 0.210539 0.328151 0.003010 0.076650 
        
 θ 4.84490200 1.007206 2.863792 3.275604 2.175305 5.507042 

80 λ 0.98535313 0.226623 0.045073 0.059464 0.612558 1.358148 
 δ 0.01847411 0.007042 0.128927 0.235599 0.00689 0.030058 
        
 θ 4.67870811 1.067013 2.652110 3.057382 2.923472 6.433944 

100 λ 0.97178306 0.215588 0.039579 0.049930 0.617141 1.326425 
 δ 0.01917112 0.007012 0.108742 0.674280 0.018626 0.043060 
        
 θ 3.46291229 0.515048 2.070760 2.347869 2.660587 3.499530 

200 λ 0.97805355 0.142969 0.053698 0.065552 0.742860 1.375821 
 δ 0.02378003 0.006597 0.128901 0.226727 0.023280 0.034632 
        
 θ 2.75068202 0.213571 1.649567 1.876592 2.3996426 3.824317 

400 λ 1.02603535 0.106797 0.076376 0.096369 0.850354 1.296530 
 δ 0.03338175 0.005713 0.177863 0.296349 0.0236109 0.047532 
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 θ 4.01237101 1.092701 2.04671 1.76890 2.963204 4.015929 

60 λ 1.1141263 0.163001 0.01792 0.04892 1.017291 1.118421 
 δ 0.02602071 0.000621 0.15290 0.12945 0.022901 0.029102 
        
 θ 4.83951367 0.580893 3.066737 3.471256 3.292285 5.863368 

80 λ 1.07103865 0.081181 0.028128 0.058541 0.975301 1.074108 
 δ 0.02402091 0.005599 0.246797 0.409150 0.018321 0.044321 
        
 θ 4.23820913 1.424018 2.609324 2.948004 2.063421 5.053179 

100 λ 1.04926958 0.069856 0.039496 0.058532 0.474219 1.183426 
 δ 0.03011371 0.011980 0.174491 0.283434 0.010487 0.048660 
        
 θ 4.76432543 0.552926 2.894188 3.271238 3.975330 5.021787 

200 λ 0.99832867 0.047037 0.027055 0.042626 0.918730 1.290198 
 δ 0.02404354 0.001101 0.162330 0.283803 0.022190 0.025855 
        
 θ 4.06432503 0.432106 2.730921 2.841062 3.089364 5.926351 

400 λ 1.14927958 0.062971 0.049201 0.030271 0.973662 1.284364 
 δ 0.02403981 0.001092 0.183028 0.159429 0.022364 0.029724 
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6     CONCLUSION 
The proposed geometric method has several innovative and 
unique features. It deals with original parameter. Table 1 
and 2 summarizes the results of the estimates for θ, λ & δ. 
Based on the results of the simulation study, we observe 
that estimates  ˆˆˆ  and  ,  are quite well with relatively 
small root mean squared and mean absolute error. This 
model work well for stress level s=4 and as the value of n 
increases the estimates become more stable. It should be 
noted that the bootstrap method demands a further 
computational complexity, in comparison with 
approximate confidence interval but it gives better results 
due to replication. Fig.1, Fig.2 & Fig.3 shows the variation 
of estimates for different sample values.From Fig. 4, we 
conclude that how with the increase in sample size the 
functional value also increases. Hence θ, λ & δ are not 
sensitive parameters. 

Therefore, the test design obtained here is robust design 
and work well under the situation where no censoring 
occurs. 
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